
e04 – Minimizing or Maximizing a Function e04kbc

nag opt bounds deriv (e04kbc)

1. Purpose

nag opt bounds deriv (e04kbc) is a comprehensive quasi-Newton algorithm for finding:

– an unconstrained minimum of a function of several variables
– a minimum of a function of several variables subject to fixed upper and/or lower bounds on

the variables.

First derivatives are required. The function nag opt bounds deriv is intended for objective functions
which have continuous first and second derivatives (although it will usually work even if the
derivatives have occasional discontinuities).

2. Specification

#include <nag.h>
#include <nage04.h>

void nag_opt_bounds_deriv(Integer n,
void (*objfun)(Integer n, double x[], double *objf,

double g[], Nag_Comm *comm),
Nag_BoundType bound, double bl[], double bu[],
double x[], double *objf, double g[],
Nag_E04_Opt *options, Nag_Comm *comm, NagError *fail)

3. Description

This function is applicable to problems of the form:

Minimize F (x1, x2, . . . , xn)
subject to lj ≤ xj ≤ uj, j = 1, 2, . . . , n.

Special provision is made for unconstrained minimization (i.e., problems which actually have no
bounds on the xj), problems which have only non-negativity bounds, and problems in which
l1 = l2 = . . . = ln and u1 = u2 = . . . = un. It is possible to specify that a particular xj

should be held constant. The user must supply a starting point and a function objfun to calculate
the value of F (x) and its first derivatives ∂F/∂xj at any point x.

A typical iteration starts at the current point x where nz (say) variables are free from both their
bounds. The vector gz, whose elements are the derivatives of F (x) with respect to the free variables,
is known. A unit lower triangular matrix L and a diagonal matrix D (both of dimension nz), such
that LDLT is a positive-definite approximation to the matrix of second derivatives with respect to
the free variables, are also stored. The equations

LDLT pz = −gz

are solved to give a search direction pz, which is expanded to an n-vector p by the insertion of
appropriate zero elements. Then α is found such that F (x + αp) is approximately a minimum
(subject to the fixed bounds) with respect to α; x is replaced by x + αp, and the matrices L and
D are updated so as to be consistent with the change produced in the gradient by the step αp. If
any variable actually reaches a bound during the search along p, it is fixed and nz is reduced for
the next iteration.

There are two sets of convergence criteria – a weaker and a stronger. Whenever the weaker criteria
are satisfied, the Lagrange-multipliers are estimated for all the active constraints. If any Lagrange-
multiplier estimate is significantly negative, then one of the variables associated with a negative
Lagrange-multiplier estimate is released from its bound and the next search direction is computed
in the extended subspace (i.e., nz is increased). Otherwise minimization continues in the current
subspace provided that this is practicable. When it is not, or when the stronger convergence criteria
is already satisfied, then, if one or more Lagrange-multiplier estimates are close to zero, a slight
perturbation is made in the values of the corresponding variables in turn until a lower function
value is obtained. The normal algorithm is then resumed from the perturbed point.
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If a saddle point is suspected, a local search is carried out with a view to moving away from the
saddle point. In addition, nag opt bounds deriv gives the user the option of specifying that a local
search should be performed when a point is found which is thought to be a constrained minimum.

If the user specifies that the problem is unconstrained, nag opt bounds deriv sets the lj to −1010

and the uj to 1010. Thus, provided that the problem has been sensibly scaled, no bounds will be
encountered during the minimization process and nag opt bounds deriv will act as an unconstrained
minimization algorithm.

4. Parameters
n

Input: the number n of independent variables.
Constraint: n ≥ 1.

objfun
objfun must evaluate the function F (x) and its first derivatives ∂F/∂xj at any point x.
(However, if the user does not wish to calculate F (x) or its first derivatives at a particular
x, there is the option of setting a parameter to cause nag opt bounds deriv to terminate
immediately.)

The specification for objfun is:

void objfun(Integer n, double x[], double *objf, double g[], Nag_Comm *comm)

n
Input: the number n of variables.

x[n]
Input: the point x at which the value of F , or F and ∂F/∂xj, are required.

objf
Output: objfun must set objf to the value of the objective function F at the
current point x. If it is not possible to evaluate F then objfun should assign a
negative value to comm->flag; nag opt bounds deriv will then terminate.

g[n]
Output: if comm->flag = 2 on entry, then objfun must set g[j − 1] to the value
of the first derivative ∂F/∂xj at the current point, x for j = 1, 2, . . . , n. If it is
not possible to evaluate the first derivatives then objfun should assign a negative
value to comm->flag; nag opt bounds deriv will then terminate.

(If comm->flag = 0 on entry, objfun must not change the elements of g.)

comm
Pointer to structure of type Nag Comm; the following members are relevant to
objfun.

flag – Integer
Input: comm->flag will be set to 0 or 2. The value 0 indicates that only
F itself needs to be evaluated. The value 2 indicates that both F and its
first derivatives must be calculated.
Output: if objfun resets comm->flag to some negative number then
nag opt bounds deriv will terminate immediately with the error indicator
NE USER STOP. If fail is supplied to nag opt bounds deriv, fail.errnum
will be set to the user’s setting of comm->flag.

first – Boolean
Input: will be set to TRUE on the first call to objfun and FALSE for all
subsequent calls.
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nf – Integer
Input: the number of calculations of the objective function; this value will
be equal to the number of calls made to objfun including the current one.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void * with a C compiler that defines void *
and char * otherwise.
Before calling nag opt bounds deriv these pointers may be allocated
memory by the user and initialized with various quantities for use by objfun
when called from nag opt bounds deriv.

Note: objfun should be tested separately before being used in conjunction with
nag opt bounds deriv. The array x must not be changed by objfun.

bound
Input: indicates whether the problem is unconstrained or bounded and, if it is bounded,
whether the facility for dealing with bounds of special forms is to be used. bound should be
set to one of the following values:

bound = Nag Bounds
if the variables are bounded and the user will be supplying all the lj and uj individually.

bound = Nag NoBounds
if the problem is unconstrained.

bound = Nag BoundsZero
if the variables are bounded, but all the bounds are of the form 0 ≤ xj .

bound = Nag BoundsEqual
if all the variables are bounded, and l1 = l2 = . . . = ln and u1 = u2 = . . . = un.

Constraint: bound = Nag Bounds, Nag NoBounds, Nag BoundsZero or Nag BoundsEqual.

bl[n]
Input: the lower bounds lj.
If bound is set to Nag Bounds, the user must set bl[j − 1] to lj , for j = 1, 2, . . . , n. (If a lower
bound is not required for any xj , the corresponding bl[j − 1] should be set to a large negative
number, e.g., −1010.)
If bound is set to Nag BoundsEqual, the user must set bl[0] to l1; nag opt bounds deriv will
then set the remaining elements of bl equal to bl[0].
If bound is set to Nag NoBounds or Nag BoundsZero, bl will be initialized by
nag opt bounds deriv.
Output: the lower bounds actually used by nag opt bounds deriv, e.g., if bound =
Nag BoundsZero, bl[0] = bl[1] = . . . = bl[n − 1] = 0.0.

bu[n]
Input: the upper bounds uj .
If bound is set to Nag Bounds, the user must set bu[j − 1] to uj, for j = 1, 2, . . . , n. (If an
upper bound is not required for any xj , the corresponding bu[j − 1] should be set to a large
positive number, e.g., 1010.)
If bound is set to Nag BoundsEqual, the user must set bu[0] to u1; nag opt bounds deriv will
then set the remaining elements of bu equal to bu[0].
If bound is set to Nag NoBounds or Nag BoundsZero, bu will be initialized by
nag opt bounds deriv.
Output: the upper bounds actually used by nag opt bounds deriv, e.g., if bound =
Nag BoundsZero, bu[0] = bu[1] = . . . = bu[n − 1] = 1010.

x[n]
Input: x[j − 1] must be set to a guess at the jth component of the position of the minimum,
for j = 1, 2, . . . , n.
Output: the final point x∗. Thus, if fail.code = NE NOERROR on exit, x[j − 1] is the jth
component of the estimated position of the minimum.
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objf
Input: if options.init state is Nag Init None (the default) or Nag Init H S, the user need not
initialize objf. If options.init state is Nag Init F G H or Nag Init All, objf must be set on
entry to the value of F (x) at the initial point supplied by the user in x.
Output: the function value at the final point given in x.

g[n]
Input: if options.init state is Nag Init F G H or Nag Init All, g must be set on entry to the
first derivative vector at the initial x. If options.init state is Nag Init None or Nag Init H S,
g need not be set.
Output: the first derivative vector corresponding to the final point in x. The elements of g
corresponding to free variables should normally be close to zero.

options
Input/Output: a pointer to a structure of type Nag E04 Opt whose members are optional
parameters for nag opt bounds deriv. These structure members offer the means of adjusting
some of the parameter values of the algorithm and on output will supply further details of
the results. A description of the members of options is given below in Section 7. Some of the
results returned in options can be used by nag opt bounds deriv to perform a ‘warm start’ if
it is re-entered (see the member init state in Section 7.2).

If any of these optional parameters are required then the structure options should be
declared and initialized by a call to nag opt init (e04xxc) and supplied as an argument to
nag opt bounds deriv. However, if the optional parameters are not required the NAG defined
null pointer, E04 DEFAULT, can be used in the function call.

comm
Input/Output: structure containing pointers for communication to user-supplied functions;
see the above description of objfun for details. If the user does not need to make use
of this communication feature the null pointer NAGCOMM NULL may be used in the call to
nag opt bounds deriv; comm will then be declared internally for use in calls to user-supplied
functions.

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.
Users are recommended to declare and initialize fail and set fail.print = TRUE for this
function.

4.1. Description of Printed Output

Intermediate and final results are printed out by default. The level of printed output can be
controlled by the user with the structure member options.print level (see Section 7.2).The default
print level of Nag Soln Iter provides a single line of output at each iteration and the final result.
This section describes the default printout produced by nag opt bounds deriv.

The following line of output is produced at each iteration. In all cases the values of the quantities
printed are those in effect on completion of the given iteration.

Itn the iteration count, k.

Nfun the cumulative number of calls made to objfun.

Objective the value of the objective function, F (x(k))

Norm g the Euclidean norm of the projected gradient vector, ‖gz(x
(k))‖.

Norm x the Euclidean norm of x(k).

Norm(x(k-1)-x(k)) the Euclidean norm of x(k−1) − x(k).

Step the step α(k) taken along the computed search direction p(k).

Cond H the ratio of the largest to the smallest element of the diagonal factor D of
the projected Hessian matrix. This quantity is usually a good estimate of
the condition number of the projected Hessian matrix. (If no variables are
currently free, this value will be zero.)
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The printout of the final result consists of:

x the final point, x∗.

g the final projected gradient vector, gz(x
∗).

Status the final state of the variable with respect to its bound(s).

5. Comments

A list of possible error exits and warnings from nag opt bounds deriv is given in Section 8. Details
of timing, scaling, accuracy and the use of nag opt bounds deriv for unconstrained minimization
are given in Section 9.

6. Example 1

This example minimizes the function

F = (x1 + 10x2)
2 + 5(x3 − x4)

2 + (x2 − 2x3)
4 + 10(x1 − x4)

4

subject to the bounds

1 ≤ x1 ≤ 3
−2 ≤ x2 ≤ 0

1 ≤ x4 ≤ 3

starting from the initial guess (3.0, −0.9, 0.13, 1.1)T .

This example shows the simple use of nag opt bounds deriv where default values are used for all
optional parameters. An example showing the use of optional parameters is given in Section 12.
There is one example program file, the main program of which calls both examples. The main
program and Example 1 are given below.

6.1. Program Text

/* nag_opt_bounds_deriv(e04kbc) Example Program
*
* Copyright 1991 Numerical Algorithms Group.
*
* Mark 2, 1991.
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nage04.h>

#ifdef NAG_PROTO
static void objfun(Integer n, double x[], double *f,

double g[], Nag_Comm *comm);
static void ex1(void);
static void ex2(void);
#else
static void objfun();
static void ex1();
static void ex2();
#endif

#define NMAX 4

main()
{
/* Two examples are called, ex1() which uses the
* default settings to solve the problem and
* ex2() which solves the same problem with
* some optional parameters set by the user.
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*/

Vprintf("e04kbc Example Program Results.\n");
ex1();
ex2();
exit(EXIT_SUCCESS);

}

#ifdef NAG_PROTO
static void objfun(Integer n, double x[], double *objf,

double g[], Nag_Comm *comm)
#else

static void objfun(n, x, objf, g, comm)
Integer n;
double x[];
double *objf;
double g[];
Nag_Comm *comm;

#endif
{
/* Routine to evaluate objective function. */

double x1, x2, x3, x4;
double tmp, tmp1, tmp2, tmp3, tmp4;

x1 = x[0];
x2 = x[1];
x3 = x[2];
x4 = x[3];

/* Supply a single function value */
tmp1 = x1 + 10.0*x2;
tmp2 = x3 - x4;
tmp3 = x2 - 2.0*x3, tmp3 *= tmp3;
tmp4 = x1 - x4, tmp4 *= tmp4;
*objf = tmp1*tmp1 + 5.0*tmp2*tmp2 + tmp3*tmp3 + 10.0*tmp4*tmp4;

if (comm->flag != 0)
{
tmp = x1 - x4;
g[0] = 2.0*(x1 + 10.0*x2) + 40.0*tmp*tmp*tmp;
tmp = x2 - 2.0*x3;
g[1] = 20.0*(x1 + 10.0*x2) + 4.0*tmp*tmp*tmp;
tmp = x2 - 2.0*x3;
g[2] = 10.0*(x3 - x4) - 8.0*tmp*tmp*tmp;
tmp = x1 - x4;
g[3] = 10.0*(x4 - x3) - 40.0*tmp*tmp*tmp;

}
} /* objfun */

static void ex1()
{
double x[NMAX], g[NMAX], bl[NMAX], bu[NMAX];

double objf;
Integer n;
Nag_BoundType bound;
static NagError fail;

fail.print = TRUE;

Vprintf("\ne04kbc example 1: no option setting.\n");

n = NMAX;
x[0] = 3.0;
x[1] = -0.9;
x[2] = 0.13;
x[3] = 1.1;
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/* Set bounds on variables */
bound = Nag_Bounds;
bl[0] = 1.0;
bu[0] = 3.0;
bl[1] = -2.0;
bu[1] = 0.0;
/* Third variable is not bounded, so third lower bound
* is set to a large negative number and third upper
* bound to a large positive number.
*/

bl[2] = -1.0e10;
bu[2] = 1.0e10;
bl[3] = 1.0;
bu[3] = 3.0;

/* Call optimization routine */
e04kbc(n, objfun, bound, bl, bu, x, &objf,

g, E04_DEFAULT, NAGCOMM_NULL, &fail);

if (fail.code != NE_NOERROR && fail.code != NW_COND_MIN) exit(EXIT_FAILURE);
} /* ex1 */

6.2. Program Data

None; but there is an example data file which contains the optional parameter values for Example
2 below.

6.3. Program Results

e04kbc Example Program Results.

e04kbc example 1: no option setting.

Parameters to e04kbc
--------------------

Number of variables........... 4

optim_tol............... 1.05e-07 linesearch_tol.......... 9.00e-01
step_max................ 1.00e+05 max_iter................ 200
init_state..........Nag_Init_None local_search............ TRUE
minlin..............Nag_Lin_Deriv deriv_check............. TRUE
print_level.........Nag_Soln_Iter machine precision....... 1.11e-16
outfile................. stdout

Memory allocation:
state................... Nag
hesl.................... Nag hesd................... Nag

Results from e04kbc:
-------------------

Iteration results:

Itn Nfun Objective Norm g Norm x Norm(x(k-1)-x(k)) Step Cond H
0 0 1.7284e+02 2.9e+02 3.3e+00 1.0e+00
1 2 2.6405e+01 2.4e+01 3.7e+00 1.2e+00 4.2e-03 3.5e+01
2 4 2.2918e+01 2.1e+01 3.7e+00 2.9e-01 1.2e-02 3.1e+01
3 7 2.1889e+01 2.5e+01 3.8e+00 2.9e-01 1.1e-02 2.3e+02
4 9 1.8034e+01 3.2e+01 3.1e+00 9.7e-01 4.7e-02 1.3e+01
5 10 1.4651e+01 1.6e+01 2.9e+00 2.3e-01 1.0e+00 1.8e+01
6 11 1.2616e+01 1.9e+01 2.6e+00 2.5e-01 1.0e+00 5.5e+01
7 12 8.2326e+00 1.3e+01 2.0e+00 6.5e-01 6.3e-01 6.6e+00
8 13 5.9714e+00 1.2e+01 1.7e+00 2.8e-01 7.0e-01 3.4e+00
9 14 3.2421e+00 6.2e+00 1.5e+00 3.5e-01 1.0e+00 7.3e+00

10 15 3.1946e+00 1.8e+01 1.5e+00 8.2e-03 1.9e-02 9.9e+01
11 17 2.4347e+00 6.2e-01 1.5e+00 8.8e-02 5.0e-03 2.1e+00
12 18 2.4338e+00 1.6e-02 1.5e+00 3.0e-03 1.0e+00 2.0e+00
13 19 2.4338e+00 8.3e-03 1.5e+00 1.6e-04 1.0e+00 4.1e+00
14 20 2.4338e+00 7.7e-06 1.5e+00 1.8e-04 1.0e+00 4.1e+00
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15 21 2.4338e+00 1.5e-08 1.5e+00 9.4e-08 1.0e+00 4.1e+00
16 22 2.4338e+00 1.5e-08 1.5e+00 8.3e-11 1.0e+00 1.0e+00
17 23 2.4338e+00 1.5e-08 1.5e+00 8.3e-11 1.0e+00 1.0e+00

Local search performed.

Final solution:
17 27 2.4338e+00 1.5e-08 1.5e+00 1.5e-08 1.0e+00 1.0e+00

Variable x g Status
1 1.0000e+00 2.9535e-01 Lower Bound
2 -8.5233e-02 -1.5114e-08 Free
3 4.0930e-01 -2.5169e-10 Free
4 1.0000e+00 5.9070e+00 Lower Bound

7. Optional Parameters

A number of optional input and output parameters to nag opt bounds deriv are available through
the structure argument options, type Nag E04 Opt. A parameter may be selected by assigning an
appropriate value to the relevant structure member; those parameters not selected will be assigned
default values. If no use is to be made of any of the optional parameters the user should use the
NAG defined null pointer, E04 DEFAULT, in place of options when calling nag opt bounds deriv; the
default settings will then be used for all parameters.

Before assigning values to options directly the structure must be initialized by a call to the function
nag opt init (e04xxc). Values may then be assigned to the structure members in the normal C
manner.

Option settings may also be read from a text file using the function nag opt read (e04xyc) in which
case initialization of the options structure will be performed automatically if not already done. Any
subsequent direct assignment to the options structure must not be preceded by initialization.

If assignment of functions and memory to pointers in the options structure is required, then this
must be done directly in the calling program; they cannot be assigned using using nag opt read
(e04xyc).

7.1. Optional Parameter Checklist and Default Values

For easy reference, the following list shows the members of options which are valid for
nag opt bounds deriv together with their default values where relevant. The number ε is a generic
notation for machine precision (see nag machine precision (X02AJC)).

Boolean list TRUE
Nag PrintType print level Nag Soln Iter
char outfile[80] stdout
void (*print fun)() NULL
Boolean deriv check TRUE
Nag InitType init state Nag Init None
Integer max iter 50n
double optim tol 10

√
ε

Nag LinFun minlin Nag Lin Deriv
double linesearch tol 0.9 (0.0 if n = 1)
double step max 100000.0
double f est
Boolean local search TRUE
Integer *state size n
double *hesl size max(n(n−1)/2,1)
double *hesd size n
Integer iter
Integer nf
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7.2. Description of Optional Parameters

list – Boolean Default = TRUE

Input: if options.list = TRUE the parameter settings in the call to nag opt bounds deriv will
be printed.

print level – Nag PrintType Default = Nag Soln Iter

Input: the level of results printout produced by nag opt bounds deriv. The following values
are available.

Nag NoPrint No output.

Nag Soln The final solution.

Nag Iter One line of output for each iteration.

Nag Soln Iter The final solution and one line of output for each iteration.

Nag Soln Iter Full The final solution and detailed printout at each iteration.

Details of each level of results printout are described in Section 7.3.
Constraint: options.print level = Nag NoPrint, Nag Soln, Nag Iter, Nag Soln Iter or
Nag Soln Iter Full.

outfile – char[80] Default = stdout

Input: the name of the file to which results should be printed. If options.outfile[0] = ’\0’ then
the stdout stream is used.

print fun – pointer to function Default = NULL
Input: printing function defined by the user; the prototype of print fun is

void (*print_fun)(const Nag_Search_State *st, Nag_Comm *comm);

See Section 7.3.1 below for further details.

deriv check – Boolean Default = TRUE

If options.init state is set to a value �= Nag Init None then the default of deriv check is
changed to FALSE.
Input: if options.deriv check = TRUE a check of the derivatives defined by objfun will
be made at the starting point x. The derivative check is carried out by a call to
nag opt check deriv (e04hcc). If options.init state is set to a value other than its default
value of Nag Init None then the default of deriv check will be FALSE. A starting point of
x = 0 or x = 1 should be avoided if this test is to be meaningful, if either of these starting
points is necessary then nag opt check deriv (e04hcc) should be used to check objfun at a
different point prior to calling nag opt bounds deriv.

init state – Nag InitType Default = Nag Init None

Input: init state specifies which of the parameters objf, g, options.hesl, options.hesd and
options.state are actually being initialized by the user. Such information will generally reduce
the time taken by nag opt bounds deriv.

init state = Nag Init None
No values are assumed to have been set in any of objf, g, options.hesl, options.hesd or
options.state. (nag opt bounds deriv will use the unit matrix as the initial estimate of
the Hessian matrix.)

init state = Nag Init F G H
The parameters objf and g must contain the value of F (x) and its first derivatives at
the starting point. The elements options.hesd[j − 1] must have been set to estimates
of the derivatives ∂2F/∂xj

2 at the starting point. No values are assumed to have been
set in options.hesl or options.state.

init state = Nag Init All
The parameters objf and g must contain the value of F (x) and its first derivatives
at the starting point. All n elements of options.state must have been set to indicate
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which variables are on their bounds and which are free. options.hesl and options.hesd
must contain the Cholesky factors of a positive-definite approximation to the nz by nz

Hessian matrix for the subspace of free variables. (This option is useful for restarting
the minimization process if options.max iter is reached.)

init state = Nag Init H S
No values are assumed to have been set in objf or g, but options.hesl, options.hesd and
options.state must have been set as for init state = Nag Init All. (This option is useful
for starting off a minimization run using second derivative information from a previous,
similar, run.)

Constraint: options.init state = Nag Init None or Nag Init F G H or Nag Init All or
Nag Init H S.

max iter – Integer Default = 50n

Input: the limit on the number of iterations allowed before termination.
Constraint: options.max iter ≥ 0.

optim tol – double Default = 10
√

ε

Input: the accuracy in x to which the solution is required.
If xtrue is the true value of x at the minimum, then xsol, the estimated position prior to a
normal exit, is such that

‖xsol − xtrue‖ < optim tol × (1.0 + ‖xtrue‖),

where ‖y‖ =

√√√√
n∑

j=1

y2
j . For example, if the elements of xsol are not much larger than 1.0 in

modulus and if optim tol is set to 10−5, then xsol is usually accurate to about 5 decimal
places. (For further details see Section 9.3.)
If the problem is scaled roughly as described in Section 9.2 and ε is the machine precision,
then

√
ε is probably the smallest reasonable choice for optim tol. (This is because, normally,

to machine accuracy, F (x +
√

εej) = F (x) where ej is any column of the identity matrix.)
Constraint: ε ≤ options.optim tol < 1.0.

minlin – Nag LinFun Default = Nag Lin Deriv

Input: minlin specifies whether the linear minimizations (i.e., minimizations of F (x + αp)
with respect to α) are to be performed by a function which just requires the evaluation of
F (x), Nag Lin NoDeriv, or by a function which also requires the first derivatives of F (x),
Nag Lin Deriv.

It will often be possible to evaluate the first derivatives of F in about the same amount
of computer time that is required for the evaluation of F itself – if this is so then
nag opt bounds deriv should be called with minlin set to Nag Lin Deriv. However, if the
evaluation of the derivatives takes more than about 4 times as long as the evaluation of F ,
then a setting of Nag Lin NoDeriv will usually be preferable. If in doubt, use the default
setting Nag Lin Deriv as it is slightly more robust.
Constraint: options.minlin = Nag Lin Deriv or Nag Lin NoDeriv.

linesearch tol – double Default = 0.9 if n > 1, and 0.0 otherwise
If options.minlin is set to Nag Lin NoDeriv then the default value of linesearch tol will be
changed from 0.9 to 0.5 if n > 1.
Input: every iteration of nag opt bounds deriv involves a linear minimization (i.e.,
minimization of F (x + αp) with respect to α). linesearch tol specifies how accurately these
linear minimizations are to be performed. The minimum with respect to α will be located
more accurately for small values of linesearch tol (say 0.01) than for large values (say 0.9).
Although accurate linear minimizations will generally reduce the number of iterations
performed by nag opt bounds deriv, they will increase the number of function evaluations
required for each iteration. On balance, it is usually more efficient to perform a low accuracy
linear minimization.

A smaller value such as 0.01 may be worthwhile:
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(a) if objfun takes so little computer time that it is worth using extra calls of objfun to
reduce the number of iterations and associated matrix calculations

(b) if F (x) is a penalty or barrier function arising from a constrained minimization problem
(since such problems are very difficult to solve)

(c) if options.minlin is set to Nag Lin NoDeriv and the calculation of first derivatives takes
so much computer time (relative to the time taken to evaluate the function) that it is
worth using extra function evaluations to reduce the number of derivative evaluations.

If n = 1, the default for linesearch tol = 0.0 (if the problem is effectively 1-dimensional then
linesearch tol should be set to 0.0 by the user even though n > 1; i.e., if for all except one of
the variables the lower and upper bounds are equal).
Constraint: 0.0 ≤ options.linesearch tol < 1.0.

step max – double Default = 100000.0
Input: an estimate of the Euclidean distance between the solution and the starting point
supplied by the user. (For maximum efficiency a slight overestimate is preferable.)
nag opt bounds deriv will ensure that, for each iteration,

√√√√
n∑

j=1

[
x

(k)
j − x

(k−1)
j

]2

≤ step max,

where k is the iteration number. Thus, if the problem has more than one solution,
nag opt bounds deriv is most likely to find the one nearest the starting point. On difficult
problems, a realistic choice can prevent the sequence of x(k) entering a region where the
problem is ill-behaved and can also help to avoid possible overflow in the evaluation of F (x).
However an underestimate of step max can lead to inefficiency.
Constraint: options.step max ≥ options.optim tol.

f est – double
Input: an estimate of the function value at the minimum. This estimate is just used for
calculating suitable step lengths for starting linear minimizations off, so the choice is not
too critical. However, it is better for f est to be set to an underestimate rather than to an
overestimate. If no value is supplied then an initial step length of 1.0, subject to the variable
bounds, will be used.

local search – Boolean Default = TRUE

Input: local search must specify whether or not the user wishes a ‘local search’ to be
performed when a point is found which is thought to be a constrained minimum. If
local search = TRUE and either the quasi-Newton direction of search fails to produce a
lower function value or the convergence criteria are satisfied, then a local search will be
performed. This may move the search away from a saddle point or confirm that the final
point is a minimum. If local search = FALSE there will be no local search when a point is
found which is thought to be a minimum.
The amount of work involved in a local search is comparable to twice that required in a
normal iteration to minimize F (x + αp) with respect to α. For most problems this will be
small (relative to the total time required for the minimization).
local search could be set FALSE if:

– it is known from the physical properties of a problem that a stationary point will be the
required minimum;

– a point which is not a minimum could be easily recognized, for example if the value of
F (x) at the minimum is known.

state – Integer * Default memory = n

Input: state need not be set if the default option of options.init state = Nag Init None is
used as n values of memory will be automatically allocated by nag opt bounds deriv.
If the option init state = Nag Init All or init state = Nag Init H S has been chosen, state
must point to a minimum of n elements of memory. This memory will already be available if
the calling program has used the options structure in a previous call to nag opt bounds deriv
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with options.init state = Nag Init None and the same value of n. If a previous call has not
been made sufficient memory must be allocated by the user.

When init state = Nag Init All or Nag Init H S then state must specify information about
which variables are currently on their bounds and which are free. If xj is:

(a) fixed on its upper bound, state[j − 1] is −1;

(b) fixed on its lower bound, state[j − 1] is −2;

(c) effectively a constant (i.e., lj = uj), state[j − 1] is −3;

(d) free, state[j − 1] gives its position in the sequence of free variables.

If options.init state is set to Nag Init None or Nag Init F G H, state will be initialized by
nag opt bounds deriv.
If options.init state is set to Nag Init All or Nag Init H S, state must be initialized by the
user before nag opt bounds deriv is called.
Output: state gives information as above about the final point given in x.

hesl – double * Default memory = max(n(n−1)/2, 1)
hesd – double * Default memory = n

Input: hesl and hesd need not be set if the default of options.init state = Nag Init None is
used as sufficient memory will be automatically allocated by nag opt bounds deriv.
If options.init state = Nag Init All or options.init state = Nag Init H S has been set then
hesl must point to a minimum of max(n(n−1)/2, 1) elements of memory.
hesd must point to at least n elements of memory if options.init state = Nag Init F G H,
options.init state = Nag Init All or options.init state = Nag Init H S has been chosen.
The appropriate amount of memory will already be available for hesl and hesd if the calling
program has used the options structure in a previous call to nag opt bounds deriv with
options.init state = Nag Init None and the same value of n. If a previous call has not been
made sufficient memory must be allocated by the user.
hesl and hesd are used to store the factors L and D of the current approximation to the
matrix of second derivatives with respect to the free variables (see Section 3). (The elements
of the matrix are assumed to be ordered according to the permutation specified by the positive
elements of state, see above.) hesl holds the lower triangle of L, omitting the unit diagonal,
stored by rows. hesd stores the diagonal elements of D. Thus if nz elements of state are
positive, the strict lower triangle of L will be held in the first nz (nz − 1)/2 elements of hesl
and the diagonal elements of D in the first nz elements of hesd.
If options.init state = Nag Init None (the default), hesl and hesd will be initialized within
nag opt bounds deriv to the factors of the unit matrix.
If the user sets options.init state to Nag Init F G H, hesd[j − 1] must contain on entry an
approximation to the second derivative with respect to xj , for j = 1, 2, . . . , n. hesl need not
be set.
If the user sets options.init state to Nag Init All or Nag Init H S, hesl and hesd must contain
on entry the Cholesky factors of a positive-definite approximation to the nz by nz matrix of
second derivatives for the subspace of free variables as specified by the user’s setting of state.
Output: hesl and hesd hold the factors L and D corresponding to the final point given in
x. The elements of hesd are useful for deciding whether to accept the result produced by
nag opt bounds deriv (see Section 9).

iter – Integer
Output: the number of iterations which have been performed in nag opt bounds deriv.

nf – Integer
Output: the number of times the residuals have been evaluated (i.e., number of calls of
objfun).

7.3. Description of Printed Output

The level of printed output can be controlled with the structure members options.list
and options.print level (see Section 7.2). If list = TRUE then the parameter values to
nag opt bounds deriv are listed, whereas the printout of results is governed by the value of
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print level. The default of print level = Nag Soln Iter provides a single line of output at each
iteration and the final result. This section describes all of the possible levels of results printout
available from nag opt bounds deriv.

When print level = Nag Iter or Nag Soln Iter a single line of output is produced on completion of
each iteration, this gives the following values:

Itn the iteration count, k.

Nfun the cumulative number of calls to objfun.

Objective the current value of the objective function, F (x(k))

Norm g the Euclidean norm of the projected gradient vector, ‖gz(x
(k))‖.

Norm x the Euclidean norm of x(k).

Norm(x(k-1)-x(k)) the Euclidean norm of x(k−1) − x(k).

Step the step α(k) taken along the computed search direction p(k).

Cond H the ratio of the largest to the smallest element of the diagonal factor D of
the projected Hessian matrix. This quantity is usually a good estimate of
the condition number of the projected Hessian matrix. (If no variables are
currently free, this value will be zero.)

When options.print level = Nag Soln Iter Full more detailed results are given at each iteration.
Additional values output are

x the current point x(k).

g the current projected gradient vector, gz(x
(k)).

Status the current state of the variable with respect to its bound(s).

If options.print level = Nag Soln or Nag Soln Iter or Nag Soln Iter Full the final result is printed
out. This consists of:

x the final point, x∗.

g the final projected gradient vector, gz(x
∗).

Status the final state of the variable with respect to its bound(s).

If options.print level = Nag NoPrint then printout will be suppressed; the user can print the final
solution when nag opt bounds deriv returns to the calling program.

7.3.1. Output of Results via a User-defined Printing Function

Users may also specify their own print function for output of iteration results and the final solution
by use of the options.print fun function pointer, which has prototype

void (*print_fun)(const Nag_Search_State *st, Nag_Comm *comm);

The rest of this section can be skipped if the default printing facilities provide the required
functionality.

When a user defined function is assigned to options.print fun this will be called in preference to
the internal print function of nag opt bounds deriv. Calls to the user defined function are again
controlled by means of the options.print level member. Information is provided through st and
comm, the two structure arguments to print fun.
The results contained in the members of st are those on completion of the last iteration or those
after a local search. (An iteration may be followed by a local search (see options.local search,
Section 7.2) in which case print fun is called with the results of the last iteration (st.local search =
FALSE) and then again when the local search has been completed (st.local search = TRUE)).
If comm->it prt = TRUE then the results on completion of an iteration of nag opt bounds deriv
are contained in the members of st. If comm->sol prt = TRUE then the final results from
nag opt bounds deriv, including details of the final iteration, are contained in the members of
st. In both cases, the same members of st are set, as follows:
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iter – Integer
the current iteration count, k, if comm->it prt = TRUE; the final iteration count, k, if
comm->sol prt = TRUE.

n – Integer
the number of variables.

x – double *
the co-ordinates of the point x(k).

f – double
the value of the current objective function.

g – double *
points to the n memory locations holding the first derivatives of F at the current point x(k).

gpj norm – double
the Euclidean norm of the current projected gradient gz.

step – double
the step α(k) taken along the search direction p(k).

cond – double
the estimate of the condition number of the Hessian matrix.

xk norm – double
the Euclidean norm of x(k−1) − x(k).

state – Integer *
the status of variables xj , j = 1, 2, . . . , n, with respect to their bounds. See Section 7.2 for a
description of the possible status values.

local search – Boolean
TRUE if a local search has been performed.

nf – Integer
the cumulative number of calls made to objfun.

The relevant members of the structure comm are:

it prt – Boolean
will be TRUE when the print function is called with the results of the current iteration.

sol prt – Boolean
will be TRUE when the print function is called with the final result.

user – double *
iuser – Integer *
p – Pointer

pointers for communication of user information. If used they must be allocated memory by
the user either before entry to nag opt bounds deriv or during a call to objfun or print fun.
The type Pointer will be void * with a C compiler that defines void * and char * otherwise.

8. Error Indications and Warnings

NE USER STOP
User requested termination, user flag value = 〈value〉.
This exit occurs if the user sets comm->flag to a negative value in objfun. If fail is supplied
the value of fail.errnum will be the same as the user’s setting of comm->flag.

NE INT ARG LT
On entry, n must not be less than 1: n = 〈value〉.

NE BOUND
The lower bound for variable 〈value〉 (array element bl[〈value〉]) is greater than the upper
bound.
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NE DERIV ERRORS
Large errors were found in the derivatives of the objective function.

NE OPT NOT INIT
Options structure not initialized.

NE BAD PARAM
On entry parameter bound had an illegal value.
On entry parameter options.print level had an illegal value.
On entry parameter options.init state had an illegal value.

NE 2 REAL ARG LT
On entry, options.step max = 〈value〉 while options.optim tol = 〈value〉. These parameters
must satisfy step max ≥ optim tol.

NE INVALID INT RANGE 1
Value 〈value〉 given to options.max iter not valid. Correct range is max iter ≥ 0.

NE INVALID REAL RANGE EF
Value 〈value〉 given to options.optim tol not valid. Correct range is ε ≤ optim tol < 1.0.

NE INVALID REAL RANGE FF
Value 〈value〉 given to options.linesearch tol not valid. Correct range is 0.0 ≤ linesearch tol
< 1.0.

NE INIT MEM
Option init state = 〈string〉 but the pointer 〈string〉 in the option structure has not been
allocated memory.

NE NO MEM
Option init state = 〈string〉 but at least one of the pointers 〈string〉 in the option structure
has not been allocated memory.

NE HESD
The initial values of the supplied options.hesd has some value(s) which is negative or too
small or the ratio of the largest element of hesd to the smallest is too large.

NE ALLOC FAIL
Memory allocation failed.

When one of the above exits occurs, no values will have been assigned by nag opt bounds deriv to
objf or to the elements of g, options.hesl, or options.hesd.

NW TOO MANY ITER
The maximum number of iterations, 〈value〉, have been performed.

If steady reductions in F (x), were monitored up to the point where this exit occurred, then the
exit probably occurred simply because options.max iter was set too small, so the calculations
should be restarted from the final point held in x. This exit may also indicate that F (x) has
no minimum.

NW COND MIN
The conditions for a minimum have not all been satisfied, but a lower point could not be
found.

Provided that, on exit, the first derivatives of F (x) with respect to the free variables are
sufficiently small, and that the estimated condition number of the second derivative matrix
is not too large, this error exit may simply mean that, although it has not been possible
to satisfy the specified requirements, the algorithm has in fact found the minimum as far
as the accuracy of the machine permits. This could be because options.optim tol has been
set so small that rounding error in objfun makes attainment of the convergence conditions
impossible.

If the estimated condition number of the approximate Hessian matrix at the final point is
large, it could be that the final point is a minimum but that the smallest eigenvalue of the
second derivative matrix is so close to zero that it is not possible to recognize the point as a
minimum.
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NE CHOLESKY OVERFLOW
An overflow would have occurred during the updating of the Cholesky factors if the
calculations had been allowed to continue. Restart from the current point with
options.init state = Nag Init None.

NW LOCAL SEARCH
The local search has failed to find a feasible point which gives a significant change of function
value.

If the problem is a genuinely unconstrained one, this type of exit indicates that the problem
is extremely ill conditioned or that the function has no minimum. If the problem has bounds
which may be close to the minimum, it may just indicate that steps in the subspace of free
variables happened to meet a bound before they changed the function value.

An exit of fail.code = NW TOO MANY ITER, NW COND MIN or NW LOCAL SEARCH may
also be caused by mistakes in objfun, by the formulation of the problem or by an awkward function.
If there are no such mistakes, it is worth restarting the calculations from a different starting point
(not the point at which the failure occurred) in order to avoid the region which caused the failure.

NE NOT APPEND FILE
Cannot open file 〈string〉 for appending.

NE WRITE ERROR
Error occurred when writing to file 〈string〉.

NE NOT CLOSE FILE
Cannot close file 〈string〉.

9. Further Comments

9.1. Timing

The number of iterations required depends on the number of variables, the behaviour of F (x),
the accuracy demanded and the distance of the starting point from the solution. The number
of multiplications performed in an iteration of nag opt bounds deriv is roughly proportional to
n2

z. In addition, each iteration makes at least one call of objfun with comm->flag = 2 if
options.minlin = Nag Lin Deriv is used or one call of objfun with comm->flag = 0 if options.minlin
= Nag Lin NoDeriv is chosen. So, unless F (x) can be evaluated very quickly, the run time will be
dominated by the time spent in objfun.

9.2. Scaling

Ideally, the problem should be scaled so that, at the solution, F (x) and the corresponding values
of the xj are each in the range (−1, +1), and so that at points one unit away from the solution,
F (x) differs from its value at the solution by approximately one unit. This will usually imply that
the Hessian matrix at the solution is well conditioned. It is unlikely that the user will be able to
follow these recommendations very closely, but it is worth trying (by guesswork), as sensible scaling
will reduce the difficulty of the minimization problem, so that nag opt bounds deriv will take less
computer time.

9.3. Accuracy

A successful exit (fail.code = NE NOERROR) is made from nag opt bounds deriv when (B1, B2
and B3) or B4 hold, and the local search (if used) confirms a minimum, where

B1 ≡ α(k) × ‖p(k)‖ < (optim tol +
√

ε) × (1.0 + ‖x(k)‖)
B2 ≡ |F (k) − F (k−1)| < (optim tol2 + ε) × (1.0 + |F (k)|)
B3 ≡ ‖g(k)

z ‖ < (ε1/3 + optim tol) × (1.0 + |F (k)|)
B4 ≡ ‖g(k)

z ‖ < 0.01 ×√
ε.

(Quantities with superscript k are the values at the kth iteration of the quantities mentioned in
Section 3; ε is the machine precision, ‖.‖ denotes the Euclidean norm and optim tol is described
in Section 7.)
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If fail.code = NE NOERROR, then the vector in x on exit, xsol, is almost certainly an estimate of
the position of the minimum, xtrue, to the accuracy specified by optim tol.

If fail.code = NW COND MIN or NW LOCAL SEARCH, xsol may still be a good estimate of xtrue,
but the following checks should be made. Let the largest of the first nz elements of options.hesd
be hesd[b], let the smallest be hesd[s], and define k = hesd[b] / hesd[s]. The scalar k is usually a
good estimate of the condition number of the projected Hessian matrix at xsol. If

(a) the sequence {F (x(k))} converges to F (xsol) at a superlinear or a fast linear rate,

(b) ‖gz(xsol)‖2 < 10.0 × ε, and

(c) k < 1.0/‖gz(xsol)‖,
then it is almost certain that xsol is a close approximation to the position of a minimum. When
(b) is true, then usually F (xsol) is a close approximation to F (xtrue). The quantities needed for
these checks are all available in the results printout from nag opt bounds deriv; in particular the
final value of Cond H gives k.
Further suggestions about confirmation of a computed solution are given in the Chapter
Introduction.

9.4. Unconstrained Minimization

If a problem is genuinely unconstrained and has been scaled sensibly, the following points apply:

(a) nz will always be n,

(b) if options.init state is set to Nag Init All or Nag Init H S on entry, options.state[j − 1] has
simply to be set to j, for j = 1, 2, . . . , n,

(c) options.hesl and options.hesd will be factors of the full approximate second derivative matrix
with elements stored in the natural order,

(d) the elements of g should all be close to zero at the final point,

(e) the Status values given in the printout from nag opt bounds deriv and in options.state on
exit are unlikely to be of interest (unless they are negative, which would indicate that the
modulus of one of the xj has reached 1010 for some reason),

(f) Norm g simply gives the norm of the first derivative vector.
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11. See Also

nag opt bounds deriv (e04kbc)
nag opt init (e04xxc)
nag opt read (e04xyc)
nag opt free (e04xzc)
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12. Example 2

Example 2 solves the same problem as Example 1 but shows the use of certain optional parameters.
The options structure is declared and four option values are read from a data file by use of
nag opt read (e04xyc). The memory freeing function nag opt free (e04xzc) is used to free the
memory assigned to the pointers in the option structure. Users should not use the standard C
function free() for this purpose.

12.1. Program Text

static void ex2()
{
double x[NMAX], g[NMAX], bl[NMAX], bu[NMAX];

double objf;
Integer n;
Boolean print;
Nag_BoundType bound;
Nag_E04_Opt options;
static NagError fail, fail2;

fail.print = TRUE;

Vprintf("\n\ne04kbc example 2: using option setting.\n");

n = NMAX;
x[0] = 3.0;
x[1] = -0.9;
x[2] = 0.13;
x[3] = 1.1;

/* Read option values from file */
print = TRUE;
e04xyc("e04kbc", "stdin", &options, print, "stdout", &fail);
if (fail.code != NE_NOERROR) exit(EXIT_FAILURE);

bound = Nag_Bounds;
bl[0] = 1.0;
bu[0] = 3.0;
bl[1] = -2.0;
bu[1] = 0.0;
/* Third variable is not bounded, so third lower bound
* is set to a large negative number and third upper
* bound to a large positive number.
*/

bl[2] = -1.0e10;
bu[2] = 1.0e10;
bl[3] = 1.0;
bu[3] = 3.0;

e04kbc(n, objfun, bound, bl, bu, x, &objf,
g, &options, NAGCOMM_NULL, &fail);

/* Free memory allocated by e04kbc to pointers hesd, hesl and state */
fail2.print = TRUE;
e04xzc(&options, "all", &fail2);
if (fail.code != NE_NOERROR && fail.code != NW_COND_MIN ||

fail2.code != NE_NOERROR) exit(EXIT_FAILURE);
} /* ex2 */

12.2. Program Data

e04kbc Example Program Data

Following options for e04kbc are read by e04xyc in example 2.

begin e04kbc

print_level = Nag_Soln_Iter_Full /* Print full iterations and solution. */
max_iter = 40 /* Perform maximum of 40 iterations */
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step_max = 4.0 /* Estimate minimum within 4 units of start */
f_est = 0.0 /* Zero is a lower bound on the function value */

end

12.3. Program Results

Optional parameter setting for e04kbc.
--------------------------------------

Option file: stdin

print_level set to Nag_Soln_Iter_Full
max_iter set to 40
step_max set to 4.00e+00
f_est set to 0.00e+00

Parameters to e04kbc
--------------------

Number of variables........... 4

optim_tol............... 1.05e-07 linesearch_tol.......... 9.00e-01
f_est................... 0.00e+00
step_max................ 4.00e+00 max_iter................ 40
init_state..........Nag_Init_None local_search............ TRUE
minlin..............Nag_Lin_Deriv deriv_check............. TRUE
print_level....Nag_Soln_Iter_Full machine precision....... 1.11e-16
outfile................. stdout

Memory allocation:
state................... Nag
hesl.................... Nag hesd................... Nag

Results from e04kbc:
-------------------

Iteration results:

Itn Nfun Objective Norm g Norm x Norm(x(k-1)-x(k)) Step Cond H
0 0 1.7284e+02 2.9e+02 3.3e+00 1.0e+00

Variable x g Status
1 3.0000e+00 2.6236e+02 Upper Bound
2 -9.0000e-01 -1.2624e+02 Free
3 1.3000e-01 2.7872e+00 Free
4 1.1000e+00 -2.6466e+02 Free

Itn Nfun Objective Norm g Norm x Norm(x(k-1)-x(k)) Step Cond H
1 1 2.6813e+01 2.7e+01 3.7e+00 1.2e+00 4.0e-03 3.4e+01

Variable x g Status
1 3.0000e+00 2.1529e+01 Upper Bound
2 -3.9251e-01 -1.9503e+01 Free
3 1.1880e-01 -1.8450e+01 Free
4 2.1639e+00 -2.9276e+00 Free

Itn Nfun Objective Norm g Norm x Norm(x(k-1)-x(k)) Step Cond H
2 3 2.3453e+01 2.0e+01 3.7e+00 2.6e-01 1.0e-02 4.2e+01

Variable x g Status
1 3.0000e+00 2.9429e+01 Upper Bound
2 -2.2652e-01 1.2204e+01 Free
3 3.1377e-01 -1.3004e+01 Free
4 2.1125e+00 -9.9713e+00 Free

Itn Nfun Objective Norm g Norm x Norm(x(k-1)-x(k)) Step Cond H
3 6 2.1599e+01 2.8e+01 3.7e+00 2.2e-01 8.7e-03 2.3e+02

[NP3275/5/pdf] 3.e04kbc.19



nag opt bounds deriv NAG C Library Manual

Variable x g Status
1 3.0000e+00 2.6022e+01 Free
2 -2.5718e-01 -6.5438e-01 Free
3 5.3184e-01 2.3232e+00 Free
4 2.1431e+00 -9.0525e+00 Free

Itn Nfun Objective Norm g Norm x Norm(x(k-1)-x(k)) Step Cond H
4 8 1.6189e+01 2.3e+01 3.1e+00 8.0e-01 3.1e-02 8.9e+00

Variable x g Status
1 2.1985e+00 -7.4626e-01 Free
2 -2.5748e-01 -1.6715e+01 Free
3 5.3101e-01 2.2448e+00 Free
4 2.1444e+00 1.6128e+01 Free

Itn Nfun Objective Norm g Norm x Norm(x(k-1)-x(k)) Step Cond H
5 9 1.4024e+01 1.5e+01 3.0e+00 1.7e-01 1.0e+00 1.8e+01

Variable x g Status
1 2.0816e+00 7.7589e-01 Free
2 -1.6942e-01 8.3975e-01 Free
3 5.1518e-01 -1.5466e+00 Free
4 2.0515e+00 1.5362e+01 Free

Itn Nfun Objective Norm g Norm x Norm(x(k-1)-x(k)) Step Cond H
6 10 1.1240e+01 2.1e+01 2.6e+00 3.8e-01 1.0e+00 5.4e+01

Variable x g Status
1 1.7877e+00 2.1366e+00 Free
2 -7.1798e-02 1.5908e+01 Free
3 5.1964e-01 -2.1209e+00 Free
4 1.8290e+00 1.3096e+01 Free

Itn Nfun Objective Norm g Norm x Norm(x(k-1)-x(k)) Step Cond H
7 11 7.9843e+00 1.1e+01 2.1e+00 5.4e-01 6.2e-01 3.9e+00

Variable x g Status
1 1.3605e+00 2.5858e+00 Free
2 0.0000e+00 2.3422e+01 Upper Bound
3 4.9104e-01 -2.6186e+00 Free
4 1.5106e+00 1.0331e+01 Free

Itn Nfun Objective Norm g Norm x Norm(x(k-1)-x(k)) Step Cond H
8 12 5.3035e+00 9.3e+00 1.7e+00 3.7e-01 1.0e+00 1.1e+01

Variable x g Status
1 1.0732e+00 1.7792e+00 Free
2 0.0000e+00 1.8627e+01 Upper Bound
3 4.4590e-01 -2.6928e+00 Free
4 1.2826e+00 8.7338e+00 Free

Itn Nfun Objective Norm g Norm x Norm(x(k-1)-x(k)) Step Cond H
9 13 4.6913e+00 1.9e+01 1.6e+00 9.5e-02 6.6e-02 7.3e+01

Variable x g Status
1 1.0000e+00 1.5613e+00 Lower Bound
2 0.0000e+00 1.7336e+01 Free
3 4.3666e-01 -2.5266e+00 Free
4 1.2222e+00 8.2939e+00 Free

Itn Nfun Objective Norm g Norm x Norm(x(k-1)-x(k)) Step Cond H
10 15 3.9688e+00 8.3e+00 1.6e+00 8.3e-02 4.8e-03 3.9e+00

Variable x g Status
1 1.0000e+00 -9.4589e-02 Lower Bound
2 -8.3009e-02 -1.0146e-01 Free
3 4.3672e-01 -8.4789e-01 Free
4 1.2215e+00 8.2818e+00 Free

Itn Nfun Objective Norm g Norm x Norm(x(k-1)-x(k)) Step Cond H
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11 16 2.8304e+00 6.4e+00 1.5e+00 1.6e-01 1.0e+00 1.9e+01

Variable x g Status
1 1.0000e+00 3.1074e-01 Lower Bound
2 -8.3930e-02 -3.6206e-02 Free
3 4.2460e-01 1.0297e-01 Free
4 1.0643e+00 6.4079e+00 Free

Itn Nfun Objective Norm g Norm x Norm(x(k-1)-x(k)) Step Cond H
12 17 2.4344e+00 2.4e-01 1.5e+00 6.5e-02 1.1e-01 2.6e+00

Variable x g Status
1 1.0000e+00 3.0156e-01 Lower Bound
2 -8.4922e-02 -3.4052e-02 Free
3 4.1431e-01 2.4239e-01 Free
4 1.0000e+00 5.8569e+00 Lower Bound

Itn Nfun Objective Norm g Norm x Norm(x(k-1)-x(k)) Step Cond H
13 18 2.4339e+00 8.7e-02 1.5e+00 3.2e-03 1.0e+00 4.1e+00

Variable x g Status
1 1.0000e+00 2.9879e-01 Lower Bound
2 -8.5060e-02 -7.5964e-05 Free
3 4.1114e-01 8.7488e-02 Free
4 1.0000e+00 5.8886e+00 Lower Bound

Itn Nfun Objective Norm g Norm x Norm(x(k-1)-x(k)) Step Cond H
14 19 2.4338e+00 7.8e-04 1.5e+00 1.8e-03 1.0e+00 4.1e+00

Variable x g Status
1 1.0000e+00 2.9535e-01 Lower Bound
2 -8.5233e-02 -2.7717e-04 Free
3 4.0932e-01 7.2996e-04 Free
4 1.0000e+00 5.9068e+00 Lower Bound

Itn Nfun Objective Norm g Norm x Norm(x(k-1)-x(k)) Step Cond H
15 20 2.4338e+00 3.5e-06 1.5e+00 1.5e-05 1.0e+00 4.1e+00

Variable x g Status
1 1.0000e+00 2.9535e-01 Lower Bound
2 -8.5233e-02 -2.5483e-06 Free
3 4.0930e-01 2.3869e-06 Free
4 1.0000e+00 5.9070e+00 Lower Bound

Itn Nfun Objective Norm g Norm x Norm(x(k-1)-x(k)) Step Cond H
16 21 2.4338e+00 8.2e-09 1.5e+00 4.6e-08 1.0e+00 4.1e+00

Variable x g Status
1 1.0000e+00 2.9535e-01 Lower Bound
2 -8.5233e-02 -8.1823e-09 Free
3 4.0930e-01 1.0494e-10 Free
4 1.0000e+00 5.9070e+00 Lower Bound

Itn Nfun Objective Norm g Norm x Norm(x(k-1)-x(k)) Step Cond H
17 22 2.4338e+00 8.2e-09 1.5e+00 4.2e-11 1.0e+00 1.0e+00

Variable x g Status
1 1.0000e+00 2.9535e-01 Lower Bound
2 -8.5233e-02 -8.1823e-09 Free
3 4.0930e-01 1.0494e-10 Free
4 1.0000e+00 5.9070e+00 Lower Bound

Itn Nfun Objective Norm g Norm x Norm(x(k-1)-x(k)) Step Cond H
18 23 2.4338e+00 8.2e-09 1.5e+00 4.2e-11 1.0e+00 1.0e+00

Variable x g Status
1 1.0000e+00 2.9535e-01 Lower Bound
2 -8.5233e-02 -8.1823e-09 Free
3 4.0930e-01 1.0494e-10 Free
4 1.0000e+00 5.9070e+00 Lower Bound
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Local search performed.

Final solution:

Itn Nfun Objective Norm g Norm x Norm(x(k-1)-x(k)) Step Cond H
18 27 2.4338e+00 8.2e-09 1.5e+00 8.2e-09 1.0e+00 1.0e+00

Variable x g Status
1 1.0000e+00 2.9535e-01 Lower Bound
2 -8.5233e-02 -8.1823e-09 Free
3 4.0930e-01 1.0494e-10 Free
4 1.0000e+00 5.9070e+00 Lower Bound
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